
CDF Event Data Management
Using ROOT

Robert D. Kennedy
14 June 2001

ROOT Users Workshop 2001

1) CDF EDM and ROOT: Brief Overview

2) Current Event Model: from which we are now evolving...

3) Event Data Flow: an application of fast block I/O...

4) ROOT V2 and CDF Offline: a little of our experience...

5) ROOT V3 and CDF Offline: initial impressions...

6) Requests of the ROOT Team: one operational issue, plus...

Event Data Model: Manages reading/writing of events to/from
 data files, and manages access to objects in an event.

Data Handling System: Manages file repository, delivers files.

Framework: Configures, directs execution of software modules.

CDF Event Data Management
Robert D. Kennedy

ROOT 2001
page 2CDF EDM and ROOT: Brief Overview

☞ CDF Offline uses ISO Standard C++. (Kai, v4)
Some legacy software in C and F77 is still used and supported.
Most containers are STL, STL-based, or at least STL-oriented.

☞ Overall design driven by OOP, good physical
design principles, reproducibility,
Use of forward declarations encouraged where possible. Objects
are write-locked with history once in the event. Many classes....

☞ ROOT is used (in EDM context) solely as the
implementation of event data storage.
Goal: separate storage solution details from event reconstruction
and physics analysis algorithms, as much as possible. Data
browsing and interaction are secondary long-term goals.

☞ Classes derived from StorableObject can be in
the EventRecord. StreamableObjects have specific
methods that allow them to be saved in event too.
StorableObject is derived from TObject, adds some protocol.
EventRecord is a collection of smart pointers to StorableObjects.
StreamableObjects must be contained by a StorableObject to be
in the EventRecord: small concrete classes, items in a container.

☞ Offline uses all-static CDF library builds.
No CDF Infrastructure to support version control of shared libs.
Tricks used to force linking of all known ROOT I/O dictionaries.

CDF Event Data Management
Robert D. Kennedy

ROOT 2001
page 3One Aspect of Current Event Model

☞ Priority: Entire event through reconstruction.
All event data accessed in event reconstruction, so limited benefit
to using multiple branches. "Seq(uential)Root" is an adequate
first model from which we are evolving, while taking data.

☞ Add-on (F. Ratnikov): Event random access.
Using a separate branch of event selection criteria, we now have
random access to events selected by (run,event) and so on.

☞ Issue: I/O limited by "ambitious" Streamers
Analyses must read all event data. Some classes have CPU-
intensive input methods that must be run. "Slow end-user I/O".

☞ Future: Multiple branches/trees.
Multiple user-defined classes per branch, mapped by EDM.
Additional benefits: enables mixed block/object I/O (speed)

Class EventRecord
In-Memory "format" =

Searchable Bag of
const "smart" StorableObject*

SeqRoot format on disk
1 TTree "Sequential"
1 TBranch "Sequential"

read(EventRecord&*)

write(EventRecord&*)

CDF Event Data Management
Robert D. Kennedy

ROOT 2001
page 4Simplified On-Line Event Data Flow

Net

Message Block
containing

a flattened event
(in a TBuffer)

EventRecord
containing

StorableObjects
(SeqRoot)

EventRecord
containing

StorableObjects
(SeqRoot)

serialize/
flatten()

write(TBuffer&)

deserialize/
unflatten()

☞ Selected events are "flattened" by L3 farm
node for net tranfer, using Event’s Streamer().
Some descriptive data is copied into net message header to steer
event through the I/O Hub to various requesting consumers.

☞ Monitor "unflattens" message block, restoring
original EventRecord. Using EventRecord::Streamer()

☞ If event contents are not queried/altered by
process, block I/O is a much faster alternative.
Example: 7.6 vs 53 MB/cpu-sec for object vs block read, Linux,
reconstruction output, 850MHz Pentium III, CPU 98/35% used.

☞ Logger writes message block to disk in same
format as write(Event) using minimal CPU.
write(Event) = Event::Streamer(TBuffer) + write(TBuffer)

CDF Event Data Management
Robert D. Kennedy

ROOT 2001
page 5ROOT V2 and CDF Offline

☞ Forward declarations break Rootcint model
Forward declarations in class headers can cause the ROOT
generated dictionary code to not compile. Must use new feature
#pragma extra_include in linkdef files to add #include of some
headers into dict code. Template parameter constraints and
improved decoupling in CDF Offline are being held up by effort
required to refit CDF Offline with #pragma extra_includes.

☞ Rootcint: limited preprocessor, C++ support.
Ability to use alternative preprocessor will help. Rootcint
can core dump which our build system does not yet detect. CDF
Offline code has many #ifndef __CINT__, accumulated over time.
Incomplete support for user-defined classes, and past schema
evolution recommendations, led us to write our own Streamer()s.

☞ CDF ROOT V2-based I/O is SUCCESSFUL.
Online is writing data at target rates. Common rate is 22 MB/sec
on a 400 MHz R12000 IRIX machine. Production is processing
that data on reconstruction farms. Users can read/write the
reconstructed data. Still, there’s room for improvement, from
both the CDF side and from the ROOT side:

☞ ROOT I/O: basic data types, namespaces
No "native" TBuffer support for std::string, bool, std::complex,
signed char (unless you build your code with a flag), nor all STL
containers of user-defined classes. No namespaces in our storable
classes - supported data could not use namespaces when written.

CDF Event Data Management
Robert D. Kennedy

ROOT 2001
page 6ROOT V3 and CDF Offline

☞ Our Priorities: Multi-Branch, V3 Mainstream
Our first goal in going to ROOT v3.01 is to get back into the
ROOT release mainstream. We have been using FNAL’s v2.26.
Our top priority is to implement multi-branch events, which
requires overcoming little CDF EDM-ROOT model mismatches.

☞ CDF: little experience so far with ROOT V3
Philippe Canal and I have looked at building CDF Offline with
ROOT v3.01, using some/none new features, respectively. No
severe technical problems found (a CDF int/long mismatch), but
our code would still have to be adapted to changes in V3.

☞ Automatic Schema Evolution
We write all our StorableObject streamers by hand, and most
are stable now. So, there is limited immediate benefit relative to
the cost of refitting existing Streamers. Selective adaptation....

☞ Fully Self-Describing Datafiles
If achieved, this would alleviate some CDF issues since missing
object dicts would not be an error. As with above, what do we
need to do to our Storable, Streamable Object classes to enable
full self-description? Some retrofitting of code... how much?

☞ Our plan: Upgrade to v3.01 "slowly"
First, v3.01 with no new features. Study how to adapt our code to
utilitize new features and review existing recommendations/doc.
Adiabatically adopt new features, gain experience, then complete.

Requests of the ROOT Team

CDF Event Data Management
Robert D. Kennedy

ROOT 2001
page 7

☞ Operational Issue #1: Support of Block I/O.
Recent TLeaf virtuality change and a low-level data format
change in TBuffer cost CDF significant effort. CDF needs
stability in the block I/O mechanism for the sake of CDF Level3/
Production I/O rate capabilities. We need in any ROOT release:
write(Event) = Event::Streamer(TBuffer) + write(TBuffer)
read(Event) = read(Cdf’s TBuffer) + Event::Streamer(TBuffer)
Support for past intermediate "formats" in a TBuffer is
desirable, but not a CDF requirement (unlike object I/O).

☞ Consider managing dictionary code for I/O
and non-I/O functions separately.
Breaks the static linking of I/O and non-I/O pieces which greatly
reduces the need for "#pragma extra_include", other CDF issues.

☞ We request fine-tuning of error-handling.
We want to ignore errors due to missing dictionary entries,
letting exes link to only those object dicts they actually use. Now,
this is an error per affected object, which costs CPU. We resort
to linking all known object dicts, which increases coupling.

☞ Purify: ROOT classes frequently cited
Most purify reports from CDF exes now tied to ROOT classes.
None are serious, most are purify mistakes. Still, much noise....

☞ Continue collaboration with Philippe Canal
Adapting CDF designs to ROOT models aided by his expertise.

