Root, GLAST, and IDL

Heather Kelly
NASA/GSFC
Emergent Corporation
Gamma-ray Large Area Space Telescope

- Joint NASA/DOE project, with numerous collaborators from many countries.
- Pair Conversion Telescope – designed to detect photons in the energy range of 10 keV – 300 GeV.
- Modular 4x4 design of identical towers. Each tower consists of a Tracker and CsI Calorimeter. The 4x4 array is covered by an Anti-Coincidence Shield to reject charged cosmic rays.
GLAST’s Use of Root

• First use of Root – 1999 SLAC beamtest.
 – For both data storage and analysis
• Created our first Root classes to store raw detector data.
• Mid-2000 created Root classes to store our reconstructed data.
• Since then, we have migrated our simulation and reconstruction algorithms to the Gaudi framework.
• Currently preparing for a balloon flight this summer.
 – Now we will store HSK data in Root as well.
• Also gearing up for bulk Monte Carlo production.
 – Plan to store MC data in Root.
 – We are now prepared to handle Root I/O to store output data and to re-ingest that data for re-processing.
From Space/Simulation to Root

- Raw Telemetry
 - Instrument Op Center
 - Level 0 data
 - Raw Branch
 - Housekeeping Branch
 - Root Analysis
 - MC Generator
 - MC Hits
 - "raw" data
 - reconstruction data
 - Root I/O
 - MC Branch
 - Recon Branch
 - TNtuple Branch
 - User Analysis Algorithms
 - Gaudi Framework
 - MC Digitization Algorithms

- IDL
- Root Analysis
Interative Data Language

- A commercial product available from Research Systems Inc.
- It is an analysis tool kit, familiar to many astrophysicists and earth scientists.
- Very polished professional software, supported on a variety of platforms: Unix, Windows, VMS.
- Strong visualization tools.
- Accepts data in a variety of formats including FITs and HDF.
- Drawbacks: Expensive, commercial software
- There are some GLAST collaborators who are faithful IDL users!
How will GLAST support IDL users?

- Do nothing.
 - We have limited resources, we could choose to just support Root as our analysis toolkit and provide C++ code to access the data.
- Convert Root data into some other format that IDL will ingest.
 - Do we want 2 persistent copies of the same data?
- Provide a mechanism for IDL users to access Root files directly from within IDL.
 - Root is an I/O library and an analysis toolkit.
 - Allow users to choose what analysis toolkit they wish to use.
 - Good for the users and good for Root.
 - In the end…it is about accessing the data.
 - Many users have extensive libraries of IDL routines.
 - Some are not interested in learning C++.
 - Others are very excited to use Root as an analysis toolkit.
 - We provide data access and a set of common routines written in C++ that will be accessible to both Root and IDL users.
Root2IDL: Proof of Concept

- For our 1999 beamtest – stored our data in Root trees.
- IDL is written in ANSI C – on all platforms.
- IDL provides a mechanism to call external routines through Dynamic Load Modules (shareable library).
 - The fact that the routine is external is transparent to the user.
 - Behaves as an IDL system routine.
- For the beamtest, a DLM, Root2IDL, was created to handle the specific TTree structure we were using.
- The DLM reads in the Root tree data and converts it into an IDL structure (equivalent to a C structure).
- The data is then available within IDL.

Example Interface to IDL

```c
#include "export.h" // Include file available with IDL distribution

static IDL_VPTR testfun(int argc, IDL_VPTR *argv)
{
    return IDL_StrToSTRING("TESTFUN");
}

int IDL_Load(void)
{
    static IDL_SYSFUN_DEF2 function_addr[ ] = {
        { testfun, "TESTFUN", 0, IDL_MAXPARAMS, 0, 0},
    };

    /* Register our routine.*/
    return IDL_SysRtnAdd(function_addr, TRUE, ARRAYLEN(function_addr));
}
```
Root2IDL in Action
Problems / To Do List

• IDL’s DLM interface has migrated in versions 5.2…5.4.
• Need a generic interface for all Root files.
 – Our Root classes will certainly evolve – plus a general utility may be useful to the community at large.
 – This is possible due to TStreamerInfo!
• Optimization is necessary.
• Plan
 – Upgrade the Root2IDL DLM to handle our specific Root class structure for our upcoming balloon flight and MC simulations.
 – Once things settle down, we can then proceed to provide a generic utility for any Root file.
Suggestions for Root

• Windows support
 – Many GLAST collaborators are Windows users and will perform some analysis using Root interactively on Windows. There are quirks in the GUI.

• Root and Gaudi
 – Projects also using Gaudi as their framework would love to see a persistency mechanism that handles “real” Root.

• It is difficult to “keep up” with the upgrades in Root from version to version. We may not always be able to upgrade in a timely manner.

• Some Great New Things about Root
 – Dedicated users
 – Tree Friendship
 – Apache server