The Neural Network Objects

Johannes Steffens
, Marcel Kunze, Helmut Schmücker
Institut für Experimentalphysik 1, Ruhr-Universität Bochum
Neural Network Objects (NNO) is a C++ class library that implements the most popular conventional neural networks together with novel incremental models that have been invented at Bochum University. The package is publicly available and has proven versatile in a broad range of applications over the past years. In the context of the Pico Analysis Framework NNO has now been completely revised in order to take full advantage of the ROOT framework for data management and graphics.

[image: image1.png]~=lolx|

File Edt View Options Inspector Classes Help
InXMLP. [rmihF callKMLP. RecaHLF
hert = 36313 et = 5000
vean = o[2000 ean = 0.108
|rws = o Rus_= 02316
35000F- Trai 1s00f Tes
30000 THE
a0
25000F
12007
200007 1000
150005 so0F-
s00F-
100007
a00f
000 b
oL L L oL
Kl EY o 05 1 EY o 05 1

(oraph

13000] 2200

Training Test
200

1300)

1600)

1an0)

1200)

st L L L L L L
o 2 4 & @ 10 120 o 2 4 & @ 10 120

Fig.1: Live updating graphics to control the progress of network training

The example shows the network output for training and test sample (upper row) and the corresponding error function as the training cycles commence.

Architecture

At the time being the package comprises

	Supervised Training Models
	Multi-Layer Perceptron (TMLP, TXMLP)

Fisher Discriminant (TFD)
Supervised Growing Cell Structure (TSGCS)
Supervised Growing Neural Gas (TSGNG)

Neural Network Kernel (TNNK)

	Unsupervised Training Models
	Learning Vector Quantisation (TLVQ)
Growing Cell Structure (TGCS)
Growing Neural Gas (TGNG)

The design foresees that all models are derived from the same abstract base class VNeuralNet. The common base class enforces a unique interface to data management, training and recall cycles and graphics operations at one central place. VSupervisedNet and VUnsupervisedNet both inherit from VNeuralNet and take care of the different learning paradigms. In addition specific implementations of the networks can utilize a plotter to produce a live updating graphics window to control the training progress: The abstract VNeuralNetPlotter interface allows to plug in a graphics engine, like the default TSimpleNeuralNetPlotter.

[image: image2.wmf]VNeuralNet

VSupervisedNet

VUnsupervisedNet

TXMLP

TFD

TSGCS

TSGNG

TNNK

TGCS

TGNG

TLVQ

VNeuralNetPlotter

TSimpleNeuralNetPlotter

TMLP

Fig.2: NNO class hierarchy
All networks implement the VNeuralNet interface and use a VNeuralNetPlotter to show their training progress.

Implementation

The VNeuralNet abstract interface defines the following contract for the implementation of specific neural network models:

	 // Abstract interface for all networks

 virtual void AllocNet() = 0;

 virtual void InitNet() = 0;

 virtual void WriteText() = 0;

 virtual void WriteBinary() = 0;

 virtual void ReadText() = 0;

 virtual void ReadBinary() = 0;

 virtual Double_t* Recall(NNO_INTYPE* in,NNO_OUTTYPE* out=0) = 0;

 virtual Double_t Train(NNO_INTYPE* in,NNO_OUTTYPE* out=0) = 0;

AllocNet acquires resources and is executed during network construction. InitNet sets up the network weight matrix. WriteText persists the network as an ASCII file, WriteBinary produces a binary file. The corresponding reading versions are able to regenerate a network in the state it was at the time when it was saved. The Recall method takes an input vector as parameter and returns the corresponding network output. The Train function takes a pair of input/output vectors, performs a Recall, modifies the weight matrix to better adapt the input probability density function and returns the squared error of the sample.

Besides the abstract interface, concrete methods have been implemented to support the execution of training cycles and to set training parameters:

	 // Training and testing

 Double_t
 TrainEpoch(TDataServe *server, Int_t nEpoch=1);

 Double_t
 TestEpoch(TDataServe *server);

 void
 BalanceSamples(Bool_t yesNo = kTRUE);

 virtual void SetMomentumTerm(Double_t f);

 virtual void SetFlatSpotElimination(Double_t f);

TDataServe is a mini database to support management of input/output vector relations. It allows to partition datasets into training and test samples, retrieve arbitrary samples and shuffle a data set prior to a new training cycle. TrainEpoch and TestEpoch are functions to train and test networks with a complete set of vectors out of a TDataServe object. The BalanceSamples option allows to have equal training statistics for good and bad samples, independent of the number of vectors per sample. The application of a momentum term might lead to faster convergence in some applications by noting the direction of gradient descent, the flat spot elimination might improve training progress in regions where the derivatives of the error matrix are near zero.

Each network implementation has to implement the abstract interface mentioned above. As an example for the integration of an independent neural network implementation into the context of NNO we have managed to support J.P. Ernenwein’s Neural Network Kernel: The TNNK interface yields seamless access to the Neural Network Kernel in the scope of NNO.

NetworkTrainer

Network training requires to identify pairs of input vectors and output vectors out of a dataset of good and bad samples to describe the problem at hand. It usually takes a certain amount of time to select suiting quantities and assemble corresponding training and test files prior to network training and write a corresponding training program or macro. However, it turns out that ROOT is performing enough to allow for interactive training of large networks with large data samples out of arbitrary ROOT files in one go. In that spirit a NetworkTrainer program has been written on the basis of the NNO package. NetworkTrainer assists to

· Assemble training and testing data sets out of ROOT trees

· Define the network architecture

· Define a training schedule

· Persist networks

· Generate C++ code to perform network recall

At the time being NetworkTrainer reads an ASCII steering file when it launches (a GUI is in preparation). The steering file knows the following directives:

	Parameter
	Type

I = input
O = output

H = hidden

C = cells
	Description

	fisher
	vector
(I O)
	Multi-layer perceptron (0 hidden layer)

	mlp
	vector
(I H O)
	Multi-layer perceptron (1 hidden layer)

	xmlp
	vector
(I H H O)
	Multi-layer perceptron (2 hidden layers)

	tnnk
	vector
(I H H O)
	Multi-layer perceptron (Neural Network Kernel)

	sgng
	vector
(I C O)
	Supervised growing neural gas

	sgcs
	vector
(I C O)
	Supervised growing cell structures

	gng
	vector
(I C)
	Growing neural gas

	gcs
	vector
(I C)
	Growing cell structures

	lvq
	vector
(I C)
	Learning vector quantization

	start
	int
	First training epoch

	stop
	int
	Last training epoch

	epoch
	int
	Number of training samples per epoch

	test
	int
	Number of test samples per epoch

	networkpath
	string
	Directory to save the trained networks

	datapath
	string
	Directory to look up data files

	file
	string
	ROOT training file containing good and bad samples

	pro
	string
	ROOT training file containing good samples (1D output only)

	con
	string
	ROOT training file containing bad samples (1D output only)

	tree
	string
	ROOT tree that acts as source to assemble the vectors

	cut
	string
	ROOT TFormula for preselection of samples

	input
	string
	Input vector, ROOT TFormulae (separated by colon)

	output
	string
	Output vector, ROOT TFormulae (separated by colon)

	transfer
	string
	Transfer function (TR_FERMI,TR_LINEAR,TR_LINEAR_BEND,TR_SIGMOID)

	momentum
	float
	Momentum term

	scale
	float
	Global scale factor to apply to input layer

	inscale
	vector
	Scale factors to apply to input layer

	outscale
	vector
	Scale factors to apply to output layer

	autoscale
	bool
	Determine scale factors to apply to input layer

	plot
	bool
	Produce graphics output (1D output only)

	balance
	bool
	Enforce presentation of equal number of good and bad samples

A sample steering file for training of a selector to separate different charged particles in a typical HEP experiment could look like the following:

	# Training of PIDSelectors with NNO

#define the network topology

xmlp 7 15 10 1

transfer TR_FERMI

momentum 0.2

balance true

plots true

test 10000

start 1

stop 200

#define the data source

datapath ../Data

networkpath ../Networks

file PidTuple1.root

file PidTuple2.root

#set up the input layer (use branch names)

tree PidTuple

cut mom>0.5&&dch>0&&dch<10000

input mom:acos(theta):svt:emc:drc:dch:ifr:ifrExp:ifrAdd

autoscale true

#set up the output layer (use branch names)

#Particles pid = {electron=1,muon,pion,kaon,proton}

output abs(pid)==3

The example above reads two input files, assembles a data server using all samples surviving the cut and runs for 200 training epochs with a 7-15-10-1 multi-layer perceptron using all available samples. In the course of the training after each epoch a persistent network file NNOxxxx.TXMLP is saved into the Networks directory, where xxxx denotes the epoch number. At the end, NetworkTrainer produces a template recall function that can be plugged into another program that wants to make use of a network. For the above example the file RecallTXMLP.cpp looks like is shown below for illustration purposes:

	// TXMLP network trained with NNO NetworkTrainer at Fri Apr 27

// Input parameters mom:acos(theta):svt:emc:drc:dch:ifr:ifrExp:ifrAdd

// Output parameters abs(pid)==3

// Training files:

//../Data/PidTuple1.root

//../Data/PidTuple2.root

#include "PAFNNO/TXMLP.hh"

Double_t* Recall(Double_t *invec)

{

static TXMLP net("TXMLP.net");

Float_t x[7];

x[0]
= 0.76594
*
invec[0];
// mom

x[1]
= 2.21056
*
invec[1];
// acos(theta)

x[2]
= 0.20365 *
invec[2];
// svt

x[3]
= 2.2859
*
invec[3];
// emc

x[4]
= 1.75435
*
invec[4];
// drc

x[5]
= 0.00165
*
invec[5];
// dch

x[6]
= 0.85728
*
invec[6];
// ifr

return net.Recall(x);

}

References

The Neural Network Objects (20 kB), J.Steffens, M.Kunze

A Comparison between the Performance of SGNG and MLP (240 kB), R.Berlich, M.Kunze

Neural Network Application, J.P.Ernenwein

The Pico Analysis Framework, S.Berger, M. Kunze, H.Schmücker

� Now director of software development at � HYPERLINK "http://www.eyematic.com/" ��Eyematic Interfaces Inc�., LA

_1049890183.unknown

