
STAR

Persistent Pointers
in the STAR Micro-DST

V. Perevoztchikov
Brookhaven National Laboratory,USA

Victor Perevoztchikov, BNL ROOT2001STAR

What is the PROBLEM?
The problem is in supporting: creating,updating of complex DST,
Mini-DST,Micro-DSTs.

u Full experimental DST contains a lot of non physical information. It
is not good for analysis. There is no disk space to keep it;

u Mini-DST contains only physical information. But it is still too
much for particular physics team. Disk space is problem too;

u Set of micro-DSTs. Each one is good for one team. But a lot of
duplicated information. Hard to maintain;

u The evident solution is to read simultaneously a subset of needed
micro-DSTs. In this case we can avoid duplication of information.

The last solution is good, but there is a difficulty:
- relationship between objects from the different Micro-DST (files).

Victor Perevoztchikov, BNL ROOT2001STAR

Relationship. Typical Example

Track has relationship with Hits, from which it was.
made. In C++ it is natural to use pointers for it.
When Hits are in one file and tracks in another, it is not too trivial.

Indices as a solution?
u We choose C++ as OO tool. Why we should refuse of it’s power

and return to Fortran era approach? Then it is more logical to
return to Fortran. It was not bad language.

u If our Hits are from different collections, one index is not enough.
We need second index for collection and must create a collection
of collections for indexing them. But these hits collections could be
also in different files.

u If we use indexing, we forbid rearranging of collections, shrinking
them, etc…

So, we decided to implement persistent pointers.

Victor Perevoztchikov, BNL ROOT2001STAR

Object Identifier.
Object Identifier is the possible solution. The
object table[id] == pointer,

allows conversion from id to pointer.

What kind of identifier?
Well known Universally Unique Identifier (UUIDGEN utility) is good for

it, but too big (32 bytes). It is easy to avoid by using UUID only for the
top level objects of the record. All subordinated objects could have 4
bytes EUID (Event Unique Identifier).

So each object is world wide uniquely labeled by UUID.EUID.

In ROOT TObject has fUniqueID member, which could be used for that, without
additional penalty.

Victor Perevoztchikov, BNL ROOT2001STAR

Little bit of History.

Relationship of objects from different files is not a
new problem:

uProfessional Data Bases , like Oracle, usually support it;
uObjectivity, as far as I know, not;

uZEBRA, where links functionally are very close to pointers,
no support also;

uADAMO, probably(?) supports it.

uDSPACK (NA49) supports it, indexing pointers during I/O;

uFARFALLA, old C++ I/O system, no support.

Victor Perevoztchikov, BNL ROOT2001STAR

Main Features of STAR
Persistent Pointer Implementation

uTop object of structure inherited from special class (StXRefMain).It has
UUID and contains list sub-structures (Branches).

uTop object of sub-structure inherited from special class (StXRef). It has
the same UUID as the main object. Sub-structures could be written in
different files or different records of one file;

uEach object could be:
l Ordinary object. Can not be seen from the other file or record;
l Pointable object. Must be inherited from special class

(StObject). It has 4 bytes ID. Could be seen from the other file;
uThe complexity of structure is based on two types of containers:

l Structural container, which is owner of objects and delete them
if deleted;

l Reference container. Keeps only reference pointers to objects.
Never deletes them.

Victor Perevoztchikov, BNL ROOT2001STAR

Main Feature continue.
uEach object belongs to only one structural container;
uEach object could belong to several reference containers;
uContainers can contain other containers;

Such structure could be very complicated and it is complicated in STAR case.

Writing:

uStructural container writes the objects and EUID;
uReference container writes only EUID of objects;

Reading:

uStructural container reads the objects and fills temporary table[EUID]=pointer;
uReference container reads EUID and gets pointer=table[EUID];

Updating:
uDuring reading user can add sub-structure and write it. It could be back pointers

to old sub-structures in it.

Victor Perevoztchikov, BNL ROOT2001STAR

Conclusions

uThe Persistent Pointers utility was developed in STAR
on the base of ROOT I/O;

uIt is working and will be tested in upcoming production and
reproduction in STAR;

uPhysicist can read only needed several Micro-DSTs
simultaneously, like they were written together.

uEach physicist can add his own Micro-DST with additional
information, with no rewriting the old data.

uWe can keep only commonly used parts on disks, keeping
all the rest on tapes;

uThere is no penalty in speed. It is even slightly (5%)
faster than standard ROOT I/O.

uIt is not big. About 1000 lines of code.

