
P. Koehn

Root2001
Workshop

14-June-01

Page 1

l Introduction
l CDF/OSU Analysis with ROOT
l ROOT Neural Net interface
l ROOT-based Standardized Ntuple
l Impressions and Requests

Phillip Koehn
For the OSU Group and CDF

Root2001 Workshop
June 14, 2001

ROOT - Based
Analysis at CDF

P. Koehn

Root2001
Workshop

14-June-01

Page 2

Introduction
l Motivation – Why ROOT ?

ä We want a tool that is easy to use for Histogramming, looping, cutting,
fitting, plotting, and writing histos to files.

ä CDF Analysis Control framework is in C++, data structure is ROOT-based,
ROOT has powerful and nice features, and it is written in C++.

l Skill Level
ä We have not taken advantage of the ROOT courses.
ä Started with someone elses ROOT macro and moved on from there.
åWe consult the ROOT web page often (root.cern.ch).

ä While faculty and post-docs have used PAW to do analysis before, grad-
students have not – ROOT is the only analysis tool they have used.

l Analysis work with ROOT
ä Using Artificial Neural Nets for measuring the single top cross section

and the top Mass, and B-tagging.
ä Using standard ntuples composed of multi-branched ROOT trees.

P. Koehn

Root2001
Workshop

14-June-01

Page 3

Basic elements of ROOT
that we use are…

l Fitting with ROOT
ä Using canned functions:

root[] myhist.Fit(“gaus”);
ä User specified functions:

root[] myhist.Fit(“MyFcn”);
ä Or fitting a histogram to two or

more with the TMinuit class:
Tminuit *gMinuit = Tminuit(1)
gMinuit->setFcn(LogLiklihoodFcn);
gMinuit->setFcn(ChiSqFcn);
gMinuit->mnexcm(“MIGRAD”,args,,);

l Using gSystem class to interact
with operating system
ä gSystem->CompileMacro();
ä gSystem->Load(“myLib.so”)
ä gSystem->Exec(AnyExe);

l ROOT Trees
ä Generate ROOT trees from CDF

analysis control Framework.
ä Make new ROOT trees from our

own macros.

l ROOT Macros with MakeClass
ä root[] TFile f(“myfile.root”)
ä root[] MakeClass(“myana”)
ä Looping, cutting,

histogramming, plotting, writing
histos to files.

l ROOT GUI
ä Touching up plots.
ä TBrowser to check contents of

root trees.

P. Koehn

Root2001
Workshop

14-June-01

Page 4

Basic elements
continued…

l Add our own overloaded methods to global_init.C that serve
as command line shortcuts for manipulating histos:
ä Zoning canvases, adding titles, changing divisions.
ä Several Draw() methods to change histogram attributes such as

color, marker type, etc…
ä Dump bin contents.
ä Normalizing histograms.
ä Ratio and efficiency of 2 histograms, compute the errors, and

create new histograms.
ä Take the integral of a histogram, and plot the new one.
ä Fitting histos (canned or user defined), and subranges of histos,

and printing fit results.
ä Printing, ghostviewing,…

P. Koehn

Root2001
Workshop

14-June-01

Page 5

ROOT to JETNET
Interface

l In our analysis work we have been using Feed Forward Neural
Networks implemented with JETNET.

ä Designed for HEP applications and easy to get up and running.
ä A collection of FORTRAN subroutines for training/testing NN’s.
ä Anonymous ftp from: thep.lu.se (latest version 3.5).
ä www.thep.lu.se/public_html/jetnet_30_manual/jetnet_30_manual.html

l Initially, we worked with many little macros to interact with JETNET
and to analyze the performance of our Neural Nets.

l We ended up pulling these together into a ROOT macro consisting of
methods that provide a flexible and simple interface to setup ANN’s
and run them with JETNET.

P. Koehn

Root2001
Workshop

14-June-01

Page 6

ROOT/JETNET
Overview

l Composed of two components:
ä ROOT macro (root_to_jetnet.C) uses command line methods to:
åSet up the Neural Net parameters (text file).
åInitiate the training/testing/running of the Neural Net.
åPlot input variables, NN performance, error, and output distributions.
åCreates .C code to compute the Neural Net output based on the weights.
åThe macro is modified by user according to individual needs.

ä JETNET .exe (FORTRAN)
åReads Neural Net parameter file created by ROOT macro.
åPerforms training/testing with JETNET subroutines.
åCreates performance and weights file.
åUser will not(or rarely) need to change it.

l Released for general consumption:
ä http://cdfpc2.mps.ohio-state.edu/root_to_jetnet/rtj.html
ä In the CVS repository at CDF
ä pkoehn@fnal.gov, catutza@fnal.gov, neu@fnal.gov.

P. Koehn

Root2001
Workshop

14-June-01

Page 7

Using the Interface
l Input files.

ä Contain a global set of all possible inputs one may choose.
ä Generated by user.
ä 1 file per sample (signal, bkg1, bkg2, …).
ä Rows (Events) and Columns (Pattern Variables).

l Set the parameters of the Neural Net.
ä Choose input variables, the number of hidden and output nodes, the

number of events to train and test, minimization method, the number of
training cycles, etc…

l Run JETNET.
ä Modes: single shot, loop over input nodes, loop over the number hidden

nodes, loop over combinations of both.
ä Produces output files: performance, error, and resultant NN weights.

l Plot the results of your neural net.
ä Performance, error, neural net output.

l Use the net.
ä Apply the C-code that computes the neural net output.

P. Koehn

Root2001
Workshop

14-June-01

Page 8

What features of ROOT
were the most helpful?

l We’re running just a simple interpreted macro.

l Efficient as a command line interface and graphics tool.

l Interaction with the operating system:
ä The work processing the NN is done by the fortran jetnet.exe –

run from the ROOT macro.

l We have converted the macro into a class that may be
compiled.
ä Easier to add methods and keep track of code.
ä Will not run much faster as most of the execution time is in

running the fortran jetnet.exe .

P. Koehn

Root2001
Workshop

14-June-01

Page 9

STNTUPLE: ROOT based
standardized ntuple.

l Closely related components: a data format and a set of
utility classes.
ä Developed by P. Murat, R. Culbertson, R. Hughes, A. Domingues,

S. Sarkar, and H. Stadie.

l The data format is a multibranched ROOT tree.
ä Generated with a Stntuple (CDF Analysis Control) Module running

on input raw or processed data.
ä Reconstructed data objects such as e’s, muons, taus, photons

etc... Several RAW data branches are also included.
ä One can add new branches to the standard ones, and to switch off

filling of the branches one doesn't need.

l The utility classes provide access to the data.
ä Implemented in a framework for specialized or user defined

analysis modules.

P. Koehn

Root2001
Workshop

14-June-01

Page 10

Doing Analysis using
STNTUPLE

l Easy to access low level and high level data objects.
l Modular framework allows user to write more complicated

analysis scripts.
l Fast: One edits, compiles, then runs a ROOT script.

åWhen the ROOT script compiler is used, recompilation and reloading
of a file about 2000 lines long takes of the order of 10 seconds on 500
MHz PentiumIII box. You can modify your analysis, rerun it and see
the results within a minute.
å Process 10k single track events from the XFT data block in about 15

seconds.

l Less painful introduction to C++ and a good way to learn
and exercize ROOT- based analysis tools.

P. Koehn

Root2001
Workshop

14-June-01

Page 11

STNTUPLE
Framework: Data Blocks

l StnDataBlock Class
ä The data written into Stntuple

are organized in blocks, similar
to the data blocks of HBOOK
column-wise ntuples.

ä Each block corresponds to a
top-level branch of ROOT tree.

ä A tree can contain an arbitrary
number of branches, so user
can decide which branches to
create/fill in the beginning of
the job.

ä An analysis job can read only
those branches which are
necessary, improving the I/O
performance.

l Data Block Types:
ä TCalDataBlock
ä TCesDataBlock
ä TClcDataBlock
ä TCmuDataBlock
ä TCmpDataBlock
ä TCmxDataBlock
ä TCprDataBlock
ä TGenpDataBlock
ä TStnJetDataBlock
ä TStnMetDataBlock
ä TStnEleDataBlock
ä TStnMuonDataBlock
ä …

P. Koehn

Root2001
Workshop

14-June-01

Page 12

STNTUPLE
Framework

The StnAna class provides
a framework for data I/O and

adding analysis modules.
ä Specify input/output

Stntuple.root files.
ä Use singly or chain multiple

analysis modules together.
ä Access methods and data

elements of individual modules.
(e.g. Grab a set of pointers to
e’s, mu’s, jet’s passing cuts,
fitting, plotting.)

ä Run(): Initiate the processing
events

StnModule is the base class for
analysis modules.
ä Contains overloaded methods:

BeginJob(), BeginRun(),
Event(), EndJob(), EndRun().

ä Access Data Blocks.
ä Access methods and data

members of other modules in
the chain.

ä Implement filter (or derive from
StntupleFilterModule class).

ä Booking, filling, plotting, and
saving of histograms.

ä Other module types include:
InitStntuple, StntupleMaker,
StntupleFill

P. Koehn

Root2001
Workshop

14-June-01

Page 13

STNTUPLE
Example Macro

{
TStnAna x("results/ttbar_prod_cdfSim.root");
gSystem->CompileMacro("TTopCand.cc","k");
gSystem->CompileMacro("TTopFindModule.cc","k");
TTopCand* tc = new TTopCand("TopC","TopC");
x.AddModule(tc);
TTopFindModule* tf = new TTopFindModule(tc,"TopFind","TopFind");
x.AddModule(tf);
TStnOutputModule out("goodevents.root");
x.SetOutputModule(&out);
x.Run();
tf->SaveHistograms("MyFavouriteHistos.root");

}

P. Koehn

Root2001
Workshop

14-June-01

Page 14

What we like…
l It is easy to get up and running and do the basics quickly.
l Fast turn around time from editing to running.
l Writing command line shortcuts to manipulate histos.
l Accessing the operating system from a macro.
l Standardized Ntuples – STntuple Classes .
l The GUI is nice, but we don’t really use it that much.
l Resources at the ROOT website are useful:
ä ROOT TALK - we get the most help from this
ä Tutorials
ä ROOT Class Categories
ä Documentation area

P. Koehn

Root2001
Workshop

14-June-01

Page 15

difficulties…
l We have the ability to make ROOT crash often.
ä Usually need to recover by quitting then restarting.
ä Unloading code does not seem to work that well.

l It would be helpful if the error output from crashes were
more informative.
ä “segmentation violation…”

l Debugging code.
ä We’ve used the CINT debugger on simple macros. It is useful, but

we would like to debug compiled ROOT macros as well.
ä Have recently used gdb.
ä End up doing things like running in the Trace mode:“ root[] .T ” or

resorting to the insertion of print statements.

P. Koehn

Root2001
Workshop

14-June-01

Page 16

Requests

l A place on the ROOT website other than the
tutorials and ROOT Talk, where any user may
submit and search for code.

l Maybe something like hotscripts.com ?
l Macros do not have to be guaranteed to work.
l Organized by categories like:
äHistogramming/formatting
äFitting
äDebugging
äEtc…

P. Koehn

Root2001
Workshop

14-June-01

Page 17

Conclusion

l We enjoy using ROOT and will continue to
use it for our needs as much as possible.

