
Trees: New Developments 1

Trees: New Developments
Folders and Tasks

ROOT Workshop 2001
June 13 FNAL

René Brun

CERNhttp://root.cern.ch

ROOT2001 Rene Brun Trees: New Developments 2

Trees before 3.01

n TTree
n TBranch
n TBranchObject
n TBranchClones
n TChain

Many limitations in split mode

Only simple classes in TClonesArray

Original classes required for TBranchObject

ROOT2001 Rene Brun Trees: New Developments 3

Trees in version 3.01

n TTree
n TBranch
n TBranchObject
n TBranchClones
n TBranchElement

n TChain
n TFriendElement

This new class replaces

TBranchObject & TBranchClones

Many more cases supported

Tree Friends

A fundamental addition

ROOT2001 Rene Brun Trees: New Developments 4

Self-describing files

n Dictionary for persistent classes written to the
file.

n ROOT files can be read by foreign readers (JAS)
n Support for Backward and Forward compatibility
n Files created in 2001 must be readable in 2015
n Classes (data objects) for all objects in a file can

be regenerated via TFile::MakeProject

Root >TFile f(“demo.root”);

Root > f.MakeProject(“dir”,”*”,”new++”);

ROOT2001 Rene Brun Trees: New Developments 5

Create a TTree Object

A tree is a list of branches.
The TTree Constructor:

n Tree Name (e.g. "myTree")

n Tree Title

TTree *tree = new TTree("T","A ROOT tree");
TTree T2(“T2”,”/Event/Tracks”);

ROOT2001 Rene Brun Trees: New Developments 6

Adding a Branch

n Branch name
n Class name
n Address of the pointer to the Object (descendant

of TObject)
n Buffer size (default = 32,000)
n Split level (default = 1)

Event *event = new Event();
myTree->Branch(”eBranch","Event",&event,64000,1);

ROOT2001 Rene Brun Trees: New Developments 7

Splitting a Branch

Setting the split level (default = 1)

Split level = 0 Split level = 1

Example:
int splitlevel = 2;
tree->Branch("EvBr","Event",&ev,64000,splitlevel);

ROOT2001 Rene Brun Trees: New Developments 8

Adding Branches with a List of Variables

n Branch name
n Address: the address of the first item of a

structure.
n Leaflist: all variable names and types
n Order the variables according to their size

Example
TBranch *b = tree->Branch ("Ev_Branch",&event,

"ntrack/I:nseg:nvtex:flag/i:temp/F");

ROOT2001 Rene Brun Trees: New Developments 9

Adding Branches with a TClonesArray

n Branch name
n Address of a pointer to a

TClonesArray
n Buffer size
n Split level (default = 1)

Example:
tree->Branch(”tracks",&Track,64000,1);
tree->Branch(”tracks",”TClonesArray”,&Track,64000,1);

ROOT2001 Rene Brun Trees: New Developments 10

Chains of Trees

n A TChain is a collection of Trees.
n Same semantics for TChains and TTrees

n root > .x h1chain.C
n root > chain.Process(“h1analysis.C”)
n root > chain.Process(“h1analysis.C+”)

void h1chain() {
//creates a TChain to be used by the h1analysis.C class
//the symbol H1 must point to a directory where the H1 data sets
//have been installed

TChain chain("h42");
chain.Add("$H1/dstarmb.root");
chain.Add("$H1/dstarp1a.root");
chain.Add("$H1/dstarp1b.root");
chain.Add("$H1/dstarp2.root");

}

h1chain.C

ROOT2001 Rene Brun Trees: New Developments 11

Tree Friends

Root > TFile f1(“tree1.root”);

Root > tree.AddFriend(“tree2”,“tree2.root”)

Root > tree.AddFriend(“tree3”,“tree3.root”);

Root > tree.Draw(“x:a”,”k<c”);

Root > tree.Draw(“x:tree2.x”,”sqrt(p)<b”);

x

Processing time
independent of the
number of friends
unlike table joins

in RDBMS

ROOT2001 Rene Brun Trees: New Developments 12

Trees and Folders

n A complete Tree can be generated automatically
from an existing Folder structure

n One Branch can be generated from a Folder
n A Folder structure can be automatically rebuilt

from a Tree file

ROOT2001 Rene Brun Trees: New Developments 13

The Tree Viewer & Analyzer

A very powerful class
supporting

complex cuts,
event lists,

1-d,2-d, 3-d views
parallelism

ROOT2001 Rene Brun Trees: New Developments 14

New TTreeFormula

n The class TTreeFormula has been extended to
process the new TBranchElement class. Thanks
Philippe Canal.

n Can access data members in an object hierarchy
in split and/or non-split modes

n support multiple levels of calls to member
functions in split or/and no-split modes.

n Support complex classes in TClonesArray
n Examples

ROOT2001 Rene Brun Trees: New Developments 15

New TTreeFormula

Event *event = 0;

TTree T(“T”);

T.Branch(“event”,”Event”,&event,32000,2);

ROOT2001 Rene Brun Trees: New Developments 16

New TTreeFormula

ROOT2001 Rene Brun Trees: New Developments 17

New TTreeFormula

ROOT2001 Rene Brun Trees: New Developments 18

New TTreeFormula

ROOT2001 Rene Brun Trees: New Developments 19

read/query Trees without the classes

ROOT2001 Rene Brun Trees: New Developments 20

read/query Trees without the classes

ROOT2001 Rene Brun Trees: New Developments 21

Automatic Code Generators

n Data sets can be analyzed by the same classes used to
store the data.

n However, one must be able to read the data without
these original classes. The classes may not be available
after some time.

n Root provides two utilities to generate a class skeleton
to read the data, still preserving the attribute names,
types and the structure.
n TTree::MakeClass
n TTree::MakeSelector

This point is important.
You can always analyze

a data set even if you have lost
the class(es) that generated

this data set

ROOT2001 Rene Brun Trees: New Developments 22

TTree::MakeClass
n tree.MakeClass(“myClass”); generates two files: myClass.h and

myClass.C

n myClass.h contains the class declaration and member functions
code that is selection invariant.

n myClass.C contains an example of empty loop where one can insert
the analysis code

n Usage:
n root > .L myClass.C or .L myClass.C++
n root > myClass xx;
n root > xx.Loop();

Use the interpreter

Use the native compiler
The file myClass.C

is automatically compiled
and linked !!

ROOT2001 Rene Brun Trees: New Developments 23

TTree::MakeSelector
n tree.MakeSelector(“myClass”); generates two files: myClass.h and

myClass.C that can work in a parallel system like PROOF. The event loop is
not under user control.

n myClass.h contains the class declaration and member functions code that is
selection invariant.

n myClass.C contains the skeleton of 4 functions: Begin, ProcessCut,
ProcessFill, Terminate.

n Usage:
n root > tree.Process(“myClass.C”);
n root > chain.Process(“myClass.C++”);

Macro is
automatically

compiled
and linked

ROOT2001 Rene Brun Trees: New Developments 24

Folders: in a nutshell

n The class TFolder has been in ROOT since quite
some time.

n A Folder structure can be used as a white board
facility to minimize dependencies between
classes via the Folder naming scheme

n User classes/collections in Folders facilitate the
documentation and inspection.

n Trees can be generated automatically from
Folders.

ROOT2001 Rene Brun Trees: New Developments 25

Some analogy with the past

n At the beginning of computing, communication via
Subroutine arguments: No global state

n Labelled Common Blocks
n ZEBRA/BOS solved at least 2 problems

n Dynamic structures
n Communication between modules only via the ZEBRA store. Eg,

banks from a simulation program could be read in a
reconstruction program

n Experience with a large variety of C++ applications
indicates a “common-block like” approach.

ROOT2001 Rene Brun Trees: New Developments 26

Why Folders ?

This diagram shows a system
without folders. The objects have
pointers to each other to access
each other's data.

Pointers are an efficient way to
share data between classes.
However, a direct pointer creates
a direct coupling between
classes.

This design can become a very
tangled web of dependencies in a
system with a large number of
classes.

ROOT2001 Rene Brun Trees: New Developments 27

Why Folders ?

In the diagram below, a reference to the data is in the folder and the consumers
refer to the folder rather than each other to access the data.

The naming and search service provided by the ROOT folders hierarchy provides
an alternative. It loosely couples the classes and greatly enhances I/O operations.

In this way, folders separate the data from the algorithms and greatly
improve the modularity of an application by minimizing the class dependencies.

ROOT2001 Rene Brun Trees: New Developments 28

Posting Data to a Folder
(Producer)

n No changes required in user class structure.
n Build a folder structure with:

n TFolder::AddFolder(TFolder *)

n Post objects or collections to a Folder with:
n TFolder::Add(TObject*)

n A TFolder can contain other folders or any TObject
descendents. In general, users will not post a single
object to a folder, they will store a collection or multiple
collections in a folder. For example, to add an array to a
folder:
n TObjArray *array;

n run_mc->Add(array);

ROOT2001 Rene Brun Trees: New Developments 29

Reading Data from a Folder
(Consumer)

One can search for a folder or an object in a folder using the
TROOT::FindObjectAny method. FindObjectAny analyzes the string passed as its
argument and searches in
the hierarchy until it finds an object or folder matching the name.
With FindObjectAny, you can give the full path name, or the name of the folder.
If only the name of the folder is given, it will return the first instance of that name.

conf = (TFolder*)gROOT-
>FindObjectAny("/aliroot/Run/Configuration");
or

conf = (TFolder*)gROOT->FindObjectAny("Configuration");

A string-based search is time consuming. If the retrieved object is used frequently
or inside a loop, you should save a pointer to the object as a class data member.

Use the naming service only in the initialization of the consumer class.

ROOT2001 Rene Brun Trees: New Developments 30

Example: Alice folders

A ROOT Tree can be automatically
generated from the folder, eg:

TTree T(“T”,”/Event”);

T.Fill();

T.Show();

This statement
generates a Tree
with 325 branches

ROOT2001 Rene Brun Trees: New Developments 31

Tasks
In the same way that Folders can be used to organize the data, one can use the
class TTask to organize a hierarchy of algorithms.
Tasks can be organized into a hierarchical tree of tasks and displayed in the
browser. The TTask class is the base class from which the subtasks are
derived. To give a task functionality, you need to subclass the TTask class and
override the Exec method.
Each TTask derived class may contain other TTasks that can be executed
recursively, such that a complex program can be dynamically built and
executed by invoking the services of the top level task or one of its subtasks.

TTask *run = new MyRun("run","Process one run");
TTask *event = new MyEvent("event","Process one event");

Use the TTask::Add method to add a subtask to an existing TTask.
To execute a TTask, you call the ExecuteTask method.
ExecuteTask will recursively call:

-TTask::Exec method of the derived class
-TTask::ExecuteTasks to execute for each task the list of its subtasks.

ROOT2001 Rene Brun Trees: New Developments 32

Execute and Debug Tasks

If the top level task is added to the list of ROOT browse-able objects,
the tree of tasks can be visualized by the ROOT browser.
To add it to the browser, get the list of browse-able objects first and
add it to the collection.

gROOT->GetListOfBrowsables()->Add(aliroot,"aliroot");

The browser can be used to start a task, set break points at the beginning
of a task or when the task has completed. At a breakpoint, data structures
generated by the execution up this point may be inspected asynchronously
and then the execution can be resumed by selecting the "Continue" function
of a task.

A Task may be active or inactive (controlled by TTask::SetActive).
When a task is inactive, its sub tasks are not executed.

A Task tree may be made persistent, saving the status of all the tasks.

ROOT2001 Rene Brun Trees: New Developments 33

Tasks

ROOT2001 Rene Brun Trees: New Developments 34

Folders/Tasks Summary

n Folders minimize coupling
between classes

n Folders are browsable. Good for
documentation and code reviews.

n Trees generated from folders

n Tasks are browsable. Good for
documentation and code reviews.

n Tasks help in understanding a
program hierarchy

n Tasks encourage common
behaviors

